Zonotopal Algebras, Orbit Harmonics, and Donaldson–Thomas Invariants of Symmetric Quivers

Author:

Reineke Markus1,Rhoades Brendon2,Tewari Vasu3

Affiliation:

1. Faculty of Mathematics, Ruhr University Bochum , Bochum, Germany

2. Department of Mathematics, University of California San Diego , La Jolla, CA 92093, USA

3. Department of Mathematics, University of Hawaii at Manoa , Honolulu, HI 96822, USA

Abstract

Abstract We apply the method of orbit harmonics to the set of break divisors and orientable divisors on graphs to obtain the central and external zonotopal algebras, respectively. We then relate a construction of Efimov in the context of cohomological Hall algebras to the central zonotopal algebra of a graph $G_{Q,\gamma }$ constructed from a symmetric quiver $Q$ with enough loops and a dimension vector $\gamma $. This provides a concrete combinatorial perspective on the former work, allowing us to identify the quantum Donaldson–Thomas (DT) invariants as the Hilbert series of the space of $S_{\gamma }$-invariants of the Postnikov–Shapiro slim subgraph space attached to $G_{Q,\gamma }$. The connection with orbit harmonics in turn allows us to give a manifestly nonnegative combinatorial interpretation to numerical DT invariants as the number of $S_{\gamma }$-orbits under the permutation action on the set of break divisors on $G$. We conclude with several representation-theoretic consequences, whose combinatorial ramifications may be of independent interest.

Funder

DFG CRC-TRR 191 “Symplectic structures in geometry, algebra and dynamics”

NSF

Simons Collaboration

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference52 articles.

1. The Tutte polynomial and toric Nakajima quiver varieties;Abdelgadir,2021

2. A system of differential equations that is related to the polynomial class of translates of a box spline;Akopyan;Mat. Zametki,1988

3. Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem;An;Forum Math. Sigma,2014

4. Combinatorics and geometry of power ideals;Ardila;Trans. Amer. Math. Soc.,2010

5. Geometric bijections for regular matroids, zonotopes, and Ehrhart theory;Backman;Forum Math. Sigma,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3