Applying Oxygen Isotope Paleothermometry in Deep Time

Author:

Grossman Ethan L.

Abstract

Oxygen isotope paleotemperature studies of the Mesozoic and Paleozoic are based mainly on conodonts, belemnite guards, and brachiopod shells—material resistant to diagenesis and generally precipitated in oxygen isotope equilibrium with ambient water. The greatest obstacle to accurate oxygen isotope paleothermometry in deep time is uncertainty in the oxygen isotopic composition of the ambient seawater. The second greatest obstacle is fossil diagenesis. Useful application of the oxygen isotope method to brachiopod shells requires extreme care in sample screening and analyses, and is best done with scanning-electron microscopy, and petrographic and cathodoluminescence microscopy, and trace-element analysis. Correct interpretation of oxygen isotope data is greatly aided by thorough understanding of the paleolatitude, paleoecology, and depositional environment of the samples. The oxygen isotope record for the Triassic, based on brachiopod shells, is too sparse to show any distinct isotopic features. Jurassic and Early Cretaceous δ18O records, based on belemnites, show a Toarcian (Jurassic) decline (warming), a Callovian-Oxfordian acme, and an Early Cretaceous increase (cooling) to a Valanginian-Hauterivian maximum, followed by a decline (warming) to a middle Barremian minimum. Deep-time applications to oxygen isotope thermometry provide evidence for cooling and glaciation in the Ordovician, Carboniferous, and Permian. The δ18O values from Silurian and Devonian brachiopod shells and conodonts average lower than those of the remaining Phanerozoic because of the absence of continental glaciers and possibly higher temperatures (~37°?), although slightly lower (≤2%o) seawater δ18O cannot be ruled out. The hypothesis of high temperatures in the early Paleozoic implies a relatively constant hydrospheric δ18O, which is supported by clumped isotope paleotemperatures. However, more research is needed to develop methods for evaluating clumped isotope reordering in fossils. Ongoing and future research in oxygen isotope and clumped isotope thermometry hold the promise of resolving deep-time temperatures, seawater δ18O, and salinity with heretofore unavailable accuracy (±2°, ±0.4%o, and ±2 psu), providing the environmental setting for the evolution of metazoan life on Earth.

Publisher

Cambridge University Press (CUP)

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3