Isotopic and mineralogic bias introduced by pulverization of aragonite

Author:

Schmitt Katharina E.1ORCID,Fink Laura J.1,Jantschke Anne1,Vigelius Daniel1,Schöne Bernd R.1

Affiliation:

1. Institute of Geosciences University of Mainz Mainz Germany

Abstract

RationaleStable carbon and oxygen isotope data of biogenic and abiogenic aragonite are of fundamental relevance in paleoclimate research. Wet‐chemical analysis of such materials requires well‐homogenized, fine‐grained powder. In the present study, the effect of different grinding/milling methods on sample homogeneity and the potential risk of unintentional calcite formation and isotope shift were evaluated.MethodsShells of Arctica islandica and aragonite sputnik crystals were pulverized using a set of commonly used methods, including a hand‐held drill, a vibromill operated at various settings (with and without liquid nitrogen cooling, changes in ball diameters, frequencies, and processing durations), and an agate mortar and pestle. Stable isotope values were measured using an isotope ratio mass spectrometer operated in continuous flow mode. Identification of mineral phases was obtained by powder X‐ray diffraction (PXRD), Raman spectroscopy, and attenuated total reflectance‐Fourier transform infrared (ATR‐FTIR) spectroscopy. Calcite content was quantified by PXRD Rietveld refinement.ResultsSamples showed substantial homogeneity, in particular after vibromilling (duration 3–10 min). More vigorous grinding resulted in larger fractions of calcite (0.5–4.2 wt%) and a concomitant δ18O and δ13C decrease, specifically in bivalve shells. The only method for producing pure aragonite powder was by pounding the aragonite sputniks manually with an agate mortar and pestle.ConclusionsNone of the studied, commonly used machine‐based pulverization methods produced pure aragonite powder from samples consisting originally of aragonite. These findings have significant implications for light‐stable isotope‐based paleoclimate reconstructions. Except for abiogenic aragonite powder produced by pounding in an agate mortar, paleotemperatures would be overestimated.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3