Amber

Author:

Labandeira Conrad C.

Abstract

The amber fossil record provides a distinctive, 320-million-year-old taphonomic mode documenting gymnosperm, and later, angiosperm, resin-producing taxa. Resins and their subfossil (copal) and fossilized (amber) equivalents are categorized into five classes of terpenoid, phenols, and other compounds, attributed to extant family-level taxa. Copious resin accumulations commencing during the early Cretaceous are explained by two hypotheses: 1) abundant resin production as a byproduct of plant secondary metabolism, and 2) induced and constitutive host defenses for warding off insect pest and pathogen attack through profuse resin production. Forestry research and fossil wood-boring damage support a causal relationship between resin production and pest attack. Five stages characterize taphonomic conversion of resin to amber: 1) Resin flows initially caused by biotic or abiotic plant-host trauma, then resin flowage results from sap pressure, resin viscosity, solar radiation, and fluctuating temperature; 2) entrapment of live and dead organisms, resulting in 3) entombment of organisms; then 4) movement of resin clumps to 5) a deposition site. This fivefold diagenetic process of amberization results in resin→copal→amber transformation from internal biological and chemical processes and external geological forces. Four phases characterize the amber record: a late Paleozoic Phase 1 begins resin production by cordaites and medullosans. A pre-mid-Cretaceous Mesozoic Phase 2 provides increased but still sparse accumulations of gymnosperm amber. Phase 3 begins in the mid-early Cretaceous with prolific amber accumulation likely caused by biotic effects of an associated fauna of sawflies, beetles, and pathogens. Resiniferous angiosperms emerge sporadically during the late Cretaceous, but promote Phase 4 through their Cenozoic expansion. Throughout Phases 3 and 4, the amber record of trophic interactions involves parasites, parasitoids, and perhaps transmission of diseases, such as malaria. Other recorded interactions are herbivory, predation, pollination, phoresy, and mimicry. In addition to litter, amber also captures microhabitats of wood and bark, large sporocarps, dung, carrion, phytotelmata, and resin substrates. These microhabitats are differentially represented; the primary taphonomic bias is size, and then the sedentary vs. wandering life habits of organisms. Organismic abundance from lekking, ant-refuse heaps, and pest outbreaks additionally contribute to bias. Various techniques are used to image and analyze amber, allowing assessment of: 1) ancient proteins; 2) phylogenetic reconstruction; 3) macroevolutionary patterns; and 4) paleobiogeographic distributions. Three major benefits result from study of amber fossil material, in contrast to three different benefits of compression-impression fossils.

Publisher

Cambridge University Press (CUP)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-photon excitation fluorescence microspectroscopy protocols for examining fluorophores in fossil plants;Communications Biology;2024-01-06

2. Cretaceous amber insects;Geological Society, London, Special Publications;2023-11-13

3. The Carnian Pluvial Episode: A damp squib for life on land?;Proceedings of the Geologists' Association;2023-07

4. The first discovery of amber resin in Lichi Mélange, Eastern Taiwan;Frontiers in Earth Science;2023-05-25

5. Ethics, law, and politics in palaeontological research: The case of Myanmar amber;Communications Biology;2022-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3