Ensemble-based 4DVarNet uncertainty quantification for the reconstruction of sea surface height dynamics

Author:

Beauchamp MaximeORCID,Febvre Quentin,Fablet Ronan

Abstract

Abstract Uncertainty quantification (UQ) plays a crucial role in data assimilation (DA) since it impacts both the quality of the reconstruction and near-future forecast. However, traditional UQ approaches are often limited in their ability to handle complex datasets and may have a large computational cost. In this paper, we present a new ensemble-based approach to extend the 4DVarNet framework, an end-to-end deep learning scheme backboned on variational DA used to estimate the mean of the state along a given DA window. We use conditional 4DVarNet simulations compliant with the available observations to estimate the 4DVarNet probability density function. Our approach enables to combine both the efficiency of 4DVarNet in terms of computational cost and validation performance with a fast and memory-saving Monte-Carlo based post-processing of the reconstruction, leading to the so-called En4DVarNet estimation of the state pdf. We demonstrate our approach in a case study involving the sea surface height: 4DVarNet is pretrained on an idealized Observation System Simulation Experiment (OSSE), then used on real-world dataset (OSE). The sampling of independent realizations of the state is made among the catalogue of model-based data used during training. To illustrate our approach, we use a nadir altimeter constellation in January 2017 and show how the uncertainties retrieved by combining 4DVarNet with the statistical properties of the training dataset lead to a relevant information providing in most cases a confidence interval compliant with the Cryosat-2 nadir alongtrack dataset kept for validation.

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3