TRIAL AND ERROR MATHEMATICS II: DIALECTICAL SETS AND QUASIDIALECTICAL SETS, THEIR DEGREES, AND THEIR DISTRIBUTION WITHIN THE CLASS OF LIMIT SETS

Author:

AMIDEI JACOPO,PIANIGIANI DUCCIO,MAURO LUCA SAN,SORBI ANDREA

Abstract

AbstractThis paper is a continuation of Amidei, Pianigiani, San Mauro, Simi, & Sorbi (2016), where we have introduced the quasidialectical systems, which are abstract deductive systems designed to provide, in line with Lakatos’ views, a formalization of trial and error mathematics more adherent to the real mathematical practice of revision than Magari’s original dialectical systems. In this paper we prove that the two models of deductive systems (dialectical systems and quasidialectical systems) have in some sense the same information content, in that they represent two classes of sets (the dialectical sets and the quasidialectical sets, respectively), which have the same Turing degrees (namely, the computably enumerable Turing degrees), and the same enumeration degrees (namely, the ${\rm{\Pi }}_1^0$ enumeration degrees). Nonetheless, dialectical sets and quasidialectical sets do not coincide. Even restricting our attention to the so-called loopless quasidialectical sets, we show that the quasidialectical sets properly extend the dialectical sets. As both classes consist of ${\rm{\Delta }}_2^0$ sets, the extent to which the two classes differ is conveniently measured using the Ershov hierarchy: indeed, the dialectical sets are ω-computably enumerable (close inspection also shows that there are dialectical sets which do not lie in any finite level; and in every finite level n ≥ 2 of the Ershov hierarchy there is a dialectical set which does not lie in the previous level); on the other hand, the quasidialectical sets spread out throughout all classes of the hierarchy (close inspection shows that for every ordinal notation a of a nonzero computable ordinal, there is a quasidialectical set lying in ${\rm{\Sigma }}_a^{ - 1}$, but in none of the preceding levels).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy,Mathematics (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3