Pulsar electrodynamics: an unsolved problem

Author:

Melrose D. B.,Yuen R.

Abstract

Pulsar electrodynamics is reviewed emphasizing the role of the inductive electric field in an oblique rotator and the incomplete screening of its parallel component by charges, leaving ‘gaps’ with $E_{\Vert }\neq 0$. The response of the plasma leads to a self-consistent electric field that complements the inductive electric field with a potential field leading to an electric drift and a polarization current associated with the total field. The electrodynamic models determine the charge density, ${\it\rho}$, and the current density, $\boldsymbol{J}$; charge starvation refers to situations where the plasma cannot supply ${\it\rho}$, resulting in a gap and associated particle acceleration and pair creation. It is pointed out that a form of current starvation also occurs implying a new class of gaps. The properties of gaps are discussed, emphasizing that static models are unstable, the role of large-amplitude longitudinal waves and the azimuthal dependence that arises across a gap in an oblique rotator. Wave dispersion in a pulsar plasma is reviewed briefly, emphasizing its role in radio emission. Pulsar radio emission mechanisms are reviewed, and it is suggested that the most plausible is a form of plasma emission.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3