Polar cap region and plasma drift in pulsars

Author:

Szary Andrzej1ORCID,van Leeuwen Joeri2

Affiliation:

1. Janusz Gil Institute of Astronomy, University of Zielona Góra , Licealna 9, PL-65-417 Zielona Góra , Poland

2. ASTRON, the Netherlands Institute for Radio Astronomy , Postbus 2, NL-7990 AA Dwingeloo , the Netherlands

Abstract

ABSTRACT Pulsars often display systematic variations in the position and/or intensity of the subpulses, the components that comprise each single pulse. Although the drift of these subpulses was observed in the early years of pulsar research, and their potential for understanding the elusive emission mechanism was quickly recognized, there is still no consensus on the cause of the drift. We explore the electrodynamics of two recently proposed or refined drift models: one where plasma lags behind corotation, connecting the drift with the rotational pole; and another where plasma drifts around the electric potential extremum of the polar cap. Generally, these are different locations, resulting in different drift behaviours, that can be tested with observations. In this study, however, we specifically examine these models in the axisymmetric case, where the physics is well understood. This approach seems counter-intuitive as both models then predict similar large-scale plasma drift. However, it allows us to show, by studying conditions within the sparks for both models, that the lagging behind corotation model is inconsistent with Faraday’s law. The modified carousel (MC) model, where plasma drifts around the electric potential extremum, not only aligns with Faraday’s law, but also provides a future direction for developing a comprehensive model of plasma generation in the polar cap region. Unlike previous models, which considered the drift only inside the discharging regions, the MC model reveals that the electric field between the discharges is not completely screened, and plasma drifts there – a paradigm shift for the drifting subpulse phenomenon.

Funder

National Science Centre

Dutch Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3