Author:
BARZ DOMINIK P. J.,ZADEH HAMID FARANGIS,EHRHARD PETER
Abstract
We investigate the flow field in an electrokinetic micromixer. The concept of the micromixer is based on the combination of an alternating electrical field applied to a pressure-driven base flow in a meander–channel geometry. The presence of the electrical field leads to an additional electro-osmotic velocity contribution, which results in a complex flow field within the meander bends. The velocity fields within the meander are measured by means of a microparticle-image velocimetry method. Furthermore, we introduce a mathematical model, describing the electrical and fluid-mechanical phenomena present within the device, and perform simulations comparable to the experiments. The comparison of simulations and experiments reveals good agreement, with minor discrepancies in flow topology, obviously caused by small but crucial differences between experimental and numerical geometries. In detail, simulations are performed for sharp corners of the bends, while in the experiments these corners are rounded due to the microfabrication process.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献