Author:
Couturier Étienne,Boyer François,Pouliquen Olivier,Guazzelli Élisabeth
Abstract
AbstractWe measure the second normal-stress difference in suspensions of non-Brownian neutrally buoyant rigid spheres dispersed in a Newtonian fluid. We use a method inspired by Wineman & Pipkin (Acta Mechanica, vol. 2, 1966, pp. 104–115) and Tanner (Trans. Soc. Rheol., vol. 14, 1970, pp. 483–507), which relies on the examination of the shape of the suspension free surface in a tilted trough flow. The second normal-stress difference is found to be negative and linear in shear stress. The ratio of the second normal-stress difference to shear stress increases with increasing volume fraction. A clear behavioural change exhibiting a strong (approximately linear) growth in the magnitude of this ratio with volume fraction is seen above a volume fraction of 0.22. By comparing our results with previous data obtained for the same batch of spheres by Boyer, Pouliquen & Guazzeli (J. Fluid Mech., 2011, doi:10.1017/jfm.2011.272), the ratio of the first normal-stress difference to the shear stress is estimated and its magnitude is found to be very small.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献