Laun's rule for predicting the first normal stress coefficient in complex fluids: A comprehensive investigation using fractional calculus

Author:

Das Mohua1ORCID,Rathinaraj Joshua David John1ORCID,Palade Liviu Iulian23ORCID,McKinley FRS Gareth H.1ORCID

Affiliation:

1. Hatsopoulos Microfluids Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology 1 , Cambridge, Massachusetts 02139, USA

2. Université de Lyon, CNRS, Institut Camille Jordan UMR 5208, INSA-Lyon 2 , 21 Avenue Jean Capelle, 69621 Villeurbanne, France and , 69621 Villeurbanne, France

3. Université de Lyon, CNRS, LaMCoS UMR 5259 and Pôle de Mathématiques, INSA-Lyon 2 , 21 Avenue Jean Capelle, 69621 Villeurbanne, France and , 69621 Villeurbanne, France

Abstract

Laun's rule [H. M. Laun, “Prediction of elastic strains of polymer melts in shear and elongation,” J. Rheol. 30, 459–501 (1986).] is commonly used for evaluating the rate-dependent first normal stress coefficient from the frequency dependence of the complex modulus. We investigate the mathematical conditions underlying the validity of Laun's relationship by employing the time-strain–separable Wagner constitutive formulation to develop an integral expression for the first normal stress coefficient of a complex fluid in steady shear flow. We utilize the fractional Maxwell liquid model to describe the linear relaxation dynamics compactly and accurately and incorporate material nonlinearities using a generalized damping function of Soskey–Winter form. We evaluate this integral representation of the first normal stress coefficient numerically and compare the predictions with Laun's empirical expression. For materials with a broad relaxation spectrum and sufficiently strong strain softening, Laun's relationship enables measurements of linear viscoelastic data to predict the general functional form of the first normal stress coefficient but often with a noticeable quantitative offset. Its predictive power can be enhanced by augmenting the original expression with an adjustable power-law index that is based on the linear viscoelastic characteristics of the specific material being considered. We develop an analytical expression enabling the calculation of the optimal power-law index from the frequency dependence of the viscoelastic spectrum and the strain-softening characteristics of the material. To illustrate this new framework, we analyze published data for an entangled polymer melt and for a semiflexible polymer solution; in both cases our new approach shows significantly improved prediction of the experimentally measured first normal stress coefficient.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3