Abstract
AbstractVelocity-gradient evolution in compressible turbulence is modelled with an autonomous dynamical system of equations that are able to explain important non-isentropic, Mach-number and viscous effects. This enhanced homogenized Euler equation (EHEE) model is validated against the Burgers equation and direct numerical simulation (DNS) computations at the appropriate limits of Mach number. The EHEE model qualitatively captures crucial nonlinear physical features – especially various dilatational aspects of the flow field – observed in DNS over a range of Mach, Reynolds and Prandtl numbers. The model can serve as the basis of more quantitative statistical and stochastic closure models.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献