An augmented invariant-based model of the pressure Hessian tensor using a combination of physics-assisted neural networks

Author:

Shikha Deep1ORCID,Sinha Sawan S.1ORCID

Affiliation:

1. Department of Applied Mechanics, Indian Institute of Technology Delhi , New Delhi 110016, India

Abstract

Modeling the velocity gradient dynamics in incompressible turbulence requires modeling two unclosed quantities: the pressure Hessian tensor and the viscous Laplacian tensor. In this work, we model the pressure Hessian tensor using a combination of two different physics-embedded deep neural networks. The first neural network is trained specifically to predict the alignment tendencies of the eigen-vectors of the pressure Hessian tensor, whereas the second neural network is trained only to predict the magnitude of the tensor. This separation of tasks allows us to define mathematically optimal and physics-informed customized loss functions separately for the two aspects (alignment and magnitude) of the tensor. Both neural networks take invariants of the velocity gradient tensor as inputs. Even though the training of the two networks is performed using direct numerical simulation database of an incompressible stationary isotropic turbulence at a particular Reynolds number, we extensively evaluate the model at different Reynolds numbers and in different kinds of flow fields. In incompressible flows, the proposed model shows significant improvements over the existing phenomenological model (the recent fluid deformation closure model or the RFD model) of the pressure Hessian tensor. While the improvements in the alignment tendencies are convincingly evident in the shapes of the probability density functions of the cosines of various angles between eigenvectors, the improvements in the prediction of the magnitude of the pressure Hessian tensor using the new model are quantifiable in the range of 28%–89% (depending on the type of the flow field) compared to the RFD model.

Funder

Science and Engineering Research Board, Government of India

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3