Dynamic effects on the transition between two-dimensional regular and Mach reflection of shock waves in an ideal, steady supersonic free stream

Author:

NAIDOO K.,SKEWS B. W.

Abstract

There have been numerous studies on the steady-state transition criteria between regular and Mach reflection of shock waves generated by a stationary, two-dimensional wedge in a steady supersonic flow, since the original shock-wave reflection research by Ernst Mach in 1878. The steady, two-dimensional transition criteria between regular and Mach reflection are well established. There has been little done to consider the dynamic effect of a rapidly rotating wedge on the transition between regular and Mach reflection. This paper presents the results of an investigation on the effect of rapid wedge rotation on regular to Mach reflection transition in the weak- and strong-reflection ranges with the aid of experiment and computational fluid dynamics. The experimental set-up includes a novel facility to rotate a pair of large aspect ratio wedges in a 450 mm × 450 mm supersonic wind tunnel at wedge rotation speeds up to 11000 deg s−1. High-speed images and measurements are presented. A numerical solution of the inviscid governing flow equations was used to mimic the experimental motion and to extend the investigation beyond the limits of the current facility to explore the influence of variables in the parameter space. There is good agreement between experimental measurements and numerical simulation. This paper includes the first experimental evidence of the regular to Mach reflection transition beyond the steady-state detachment condition in the weak- and strong-reflection ranges. It also presents results of simulations for the dynamic regular to the Mach reflection transition which show a difference between the sonic, length-scale and detachment conditions. This paper includes experimental evidence of the Mach to regular reflection transition below the steady-state von Neumann condition.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3