Dynamic Transition of Unsteady Supersonic Flow From Mach to Regular Reflection Over a Moving Wedge

Author:

Margha Lubna1,Hamada Ahmed A.2ORCID,Eltaweel Ahmed3

Affiliation:

1. Department of Ocean Engineering, Texas A&M University , Haynes Engineering Building, 727 Ross Street, College Station, TX 77843

2. Department of Ocean Engineering, Texas A&M University , College Station, TX 77843

3. Assistant Professor Aerospace Engineering Program, Zewail City of Science and Technology, Giza 12578, Egypt

Abstract

AbstractThe design of supersonic and hypersonic air-breathing vehicles is influenced by the transition between the Mach reflection (MR) and regular reflection (RR) phenomena. The purpose of this study is to investigate the dynamic transition of unsteady supersonic flow from MR to RR over a two-dimensional wedge numerically. The trailing edge of the wedge moves downstream along the x-direction with a velocity, V(t) at a freestream Mach number of 3. An unsteady compressible inviscid flow solver is used to simulate the phenomenon. The Arbitrary Lagrangian–Eulerian (ALE) technique is applied to deform the mesh during the wedge motion. The dynamic transition from MR to RR is defined by two criteria, the sonic and the von Neumann. Moreover, the lag in the dynamic transition from the steady-state condition is studied using various nondimensional angular velocities, κ, in the range of [0.1-2]. The lag effect in the shock system is remarkable at the high values of κ greater than 1.5. Furthermore, the dynamic transition from MR to RR happens below the dual solution domain (DSD) because the shock is upstream curved during the wedge motion.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3