Modelling the influence of wall roughness on heat transfer in thermal convection

Author:

Shishkina Olga,Wagner Claus

Abstract

AbstractThe objective of this study is to approximate heat transport in thermal convection enhanced by the roughness of heated/cooled horizontal plates. The roughness is introduced by a set of rectangular heated/cooled obstacles located at the corresponding plates. An analytical model to estimate the Nusselt number deviations caused by the wall roughness is developed. It is based on the two-dimensional Prandtl–Blasius boundary layer equations and therefore is valid for moderate Rayleigh numbers and regular wall roughness, for which the height of the obstacles and the distances between them are significantly larger than the thickness of the thermal boundary layers. To validate this model, the transport of heat and momentum in rectangular convection cells is studied in two-dimensional Navier–Stokes simulations, for different aspect ratios of the obstacles. It is found that the model predicts the heat transport with errors ${\leq }6\hspace{0.167em} \% $ for all investigated cases.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3