Bounding the scalar dissipation scale for mixing flows in the presence of sources

Author:

Alexakis A.,Tzella A.

Abstract

AbstractWe investigate the mixing properties of scalars stirred by spatially smooth, divergence-free flows and maintained by a steady source–sink distribution. We focus on the spatial variation of the scalar field, described by the dissipation wavenumber, ${k}_{d} $, that we define as a function of the mean variance of the scalar and its gradient. We derive a set of upper bounds that for large Péclet number ($\mathit{Pe}\gg 1$) yield four distinct regimes for the scaling behaviour of ${k}_{d} $, one of which corresponds to the Batchelor regime. The transition between these regimes is controlled by the value of $\mathit{Pe}$ and the ratio $\rho = {\ell }_{u} / {\ell }_{s} $, where ${\ell }_{u} $ and ${\ell }_{s} $ are, respectively, the characteristic length scales of the velocity and source fields. A fifth regime is revealed by homogenization theory. These regimes reflect the balance between different processes: scalar injection, molecular diffusion, stirring and bulk transport from the sources to the sinks. We verify the relevance of these bounds by numerical simulations for a two-dimensional, chaotically mixing example flow and discuss their relation to previous bounds. Finally, we note some implications for three-dimensional turbulent flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3