Symbolic factors of -adic subshifts of finite alphabet rank

Author:

ESPINOZA BASTIÁNORCID

Abstract

AbstractThis paper studies several aspects of symbolic (i.e. subshift) factors of $\mathcal {S}$ -adic subshifts of finite alphabet rank. First, we address a problem raised by Donoso et al [Interplay between finite topological rank minimal Cantor systems, S-adic subshifts and their complexity. Trans. Amer. Math. Soc.374(5) (2021), 3453–3489] about the topological rank of symbolic factors of $\mathcal {S}$ -adic subshifts and prove that this rank is at most the one of the extension system, improving on the previous results [B. Espinoza. On symbolic factors of S-adic subshifts of finite alphabet rank. Preprint, 2022, arXiv:2008.13689v2; N. Golestani and M. Hosseini. On topological rank of factors of Cantor minimal systems. Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2021.62. Published online 8 June 2021]. As a consequence of our methods, we prove that finite topological rank systems are coalescent. Second, we investigate the structure of fibers $\pi ^{-1}(y)$ of factor maps $\pi \colon (X,T)\to (Y,S)$ between minimal ${\mathcal S}$ -adic subshifts of finite alphabet rank and show that they have the same finite cardinality for all y in a residual subset of Y. Finally, we prove that the number of symbolic factors (up to conjugacy) of a fixed subshift of finite topological rank is finite, thus extending Durand’s similar theorem on linearly recurrent subshifts [F. Durand. Linearly recurrent subshifts have a finite number of non-periodic subshift factors. Ergod. Th. & Dynam. Sys.20(4) (2000), 1061–1078].

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Subshifts of finite symbolic rank;Ergodic Theory and Dynamical Systems;2024-09-09

2. Measure transfer and S-adic developments for subshifts;Ergodic Theory and Dynamical Systems;2024-03-11

3. The Jacobs–Keane theorem from the $ \mathcal{S} $-adic viewpoint;Discrete and Continuous Dynamical Systems;2024

4. Dynamical properties of minimal Ferenczi subshifts;Ergodic Theory and Dynamical Systems;2023-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3