Abstract
Abstract
We define a family
$\mathcal {B}(t)$
of compact subsets of the unit interval which provides a filtration of the set of numbers whose continued fraction expansion has bounded digits. We study how the set
$\mathcal {B}(t)$
changes as the parameter t ranges in
$[0,1]$
, and see that the family undergoes period-doubling bifurcations and displays the same transition pattern from periodic to chaotic behaviour as the family of real quadratic polynomials. The set
$\mathcal {E}$
of bifurcation parameters is a fractal set of measure zero and Hausdorff dimension
$1$
. The Hausdorff dimension of
$\mathcal {B}(t)$
varies continuously with the parameter, and we show that the dimension of each individual set equals the dimension of the corresponding section of the bifurcation set
$\mathcal {E}$
.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献