Author:
AHNERT TOBIAS,MÜNCH ANDREAS,WAGNER BARBARA
Abstract
A new two-phase model for concentrated suspensions is derived that incorporates a constitutive law combining the rheology for non-Brownian suspension and granular flow. The resulting model exhibits a yield-stress behaviour for the solid phase depending on the collision pressure. This property is investigated for the simple geometry of plane Poiseuille flow, where an unyielded or jammed zone of finite width arises in the centre of the channel. For the steady states of this problem, the governing equations are reduced to a boundary value problem for a system of ordinary differential equations and the conditions for existence of solutions with jammed regions are investigated using phase-space methods. For the general time-dependent case a new drift-flux model is derived using matched asymptotic expansions that takes into account the boundary layers at the walls and the interface between the yielded and unyielded region. The drift-flux model is used to numerically study the dynamic behaviour of the suspension flow, including the appearance and evolution of an unyielded or jammed regions.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献