Wine Review Descriptors as Quality Predictors: Evidence from Language Processing Techniques

Author:

Yang Chenyu,Barth Jackson,Katumullage Duwani,Cao Jing

Abstract

AbstractThere is an ongoing debate on whether wine reviews provide meaningful information on wine properties and quality. However, few studies have been conducted aiming directly at comparing the utility of wine reviews and numeric measurements in wine data analysis. Based on data from close to 300,000 wines reviewed by Wine Spectator, we use logistic regression models to investigate whether wine reviews are useful in predicting a wine's quality classification. We group our sample into one of two binary quality brackets, wines with a critical rating of 90 or above and the other group with ratings of 89 or below. This binary outcome constitutes our dependent variable. The explanatory variables include different combinations of numerical covariates such as the price and age of wines and numerical representations of text reviews. By comparing the explanatory accuracy of the models, our results suggest that wine review descriptors are more accurate in predicting binary wine quality classifications than are various numerical covariates—including the wine's price. In the study, we include three different feature extraction methods in text analysis: latent Dirichlet allocation, term frequency-inverse document frequency, and Doc2Vec text embedding. We find that Doc2Vec is the best performing feature extraction method that produces the highest classification accuracy due to its capability of using contextual information from text documents. (JEL Classifications: C45, C88, D83)

Publisher

Cambridge University Press (CUP)

Subject

Horticulture,General Business, Management and Accounting,Food Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3