Decontamination and reuse of surgical masks and N95 filtering facepiece respirators during the COVID-19 pandemic: A systematic review

Author:

Seresirikachorn KachornORCID,Phoophiboon VorakamolORCID,Chobarporn Thitiporn,Tiankanon Kasenee,Aeumjaturapat SongklotORCID,Chusakul Supinda,Snidvongs KornkiatORCID

Abstract

AbstractObjectives:Surgical masks and N95 filtering facepiece respirators (FFRs) prevent the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and protect medical personnel. Increased demands for surgical masks and N95 FFRs during the coronavirus disease 2019 (COVID-19) pandemic has resulted in the shortage crisis. However, there is no standard protocol for safe reuse of the N95 FFRs. In this systematic review, we aimed to evaluate the effectiveness of existing decontamination methods of surgical masks and N95 FFRs and provide evidence-based recommendations for selecting an appropriate decontamination method.Methods:We performed systematic searches of Ovid MEDLINE and Ovid EMBASE electronic databases. The last search was performed April 11, 2020. Any trials studying surgical masks and/or N95 FFRs decontamination were included. Outcomes were disinfections of virus and bacteria, restoration of the filtration efficiency, and maintenance of the physical structure of the mask.Results:Overall, 15 studies and 14 decontamination methods were identified. A low level of evidence supported 4 decontamination methods: ultraviolet (UV) germicidal irradiation (9 studies), moist heat (5 studies), microwave-generated steam (4 studies), and hydrogen peroxide vapor (4 studies). Therefore, we recommended these 4 methods, and we recommended against use were given for the other 10 methods.Conclusions:A low level of evidence supported the use of UV germicidal irradiation, moist heat, microwave-generated steam, and hydrogen peroxide vapor for decontamination and reuse of N95 FFRs. These decontamination methods were effective for viral and bacterial disinfection as well as restoration of the filtration efficiency, and the physical structure of the FFRs.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Microbiology (medical),Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3