Spreading a Durable Protective Layer of Quaternary Ammonium Agents on an N95 Respirator for Predecontamination of Airborne Mycobacterium tuberculosis and Viruses Using Mycobacterium smegmatis and Bacteriophage MS2 as Models

Author:

Khumyrzakh Bakhytbol1ORCID,Cheng Yung-Chuan1,Lai Chane-Yu2ORCID,Chang Kai-Chih3,Tseng Chun-Chieh1ORCID

Affiliation:

1. Department and Graduate Institute of Public Health, Tzu Chi University, Hualien, Taiwan

2. Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan

3. Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan

Abstract

Tuberculosis (TB) and coronavirus disease 2019 (COVID-19), caused by Mycobacterium tuberculosis (MTB) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), respectively, are serious public health issues. N95 respirators are commonly used to protect people from infections in high-risk environments. Consequently, we used Mycobacterium smegmatis and bacteriophage MS2 as MTB and SARS-CoV-2 surrogates to evaluate the ability of a quaternary ammonium agent (QAA) coating on the surface of new N95 respirators to reduce the microbial burden upon aerosol exposure. Regarding the burden (105 CFU (or PFU)/m3) of M. smegmatis and MS2 phage that settled onto the respirator surface, the QAA yielded average reduction efficiencies ( R % ) of 92.4% and 99.8%, respectively. In addition, the antimicrobial activity of the coated respirator was maintained for one week. For bioaerosols that contacted the respirator (105 CFU (or PFU)/m3), the R % of the QAA was 90.7% for M. smegmatis and 94.4% for MS2 phage on the outermost layer of the respirator. Moreover, filtration efficiencies between a QAA-coated respirator and an untreated respirator were not significantly altered ( p = 0.332 ). These results demonstrate that this QAA product has a durable antimicrobial activity and could reduce the MTB and SARS-CoV-2 concentrations on the N95 respirator surface. However, it is recommended that such a coating respirator not be worn for more than 4 hours based on hemolysis assay results.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Hindawi Limited

Subject

Public Health, Environmental and Occupational Health,Building and Construction,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3