Closed form Newton–Euler dynamic model of flexible manipulators

Author:

Bascetta LucaORCID,Ferretti Gianni,Scaglioni Bruno

Abstract

SUMMARYIn this paper, a closed-form dynamic model of flexible manipulators is developed, based on the Newton–Euler formulation of motion equations of flexible links and on the adoption of the spatial vector notation. The proposed model accounts for two main innovations with respect to the state of the art: it is obtained in closed form with respect to the joints and modal coordinates (including the quadratic velocity terms) and motion equations of the whole manipulator can be computed for any arbitrary shape of the links and any possible link cardinality starting from the output of several commercial (finite element analysis) FEA codes. The Newton–Euler formulation of motion equations in terms of the joint and elastic variables greatly improves the simulation performances and makes the model suitable for real-time control and active vibration damping. The model has been compared with literature benchmarks obtained by the classical multibody approach and further validated by comparison with experiments collected on an experimental manipulator.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference52 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Model Predictive Control for Two-DOF Flexible-Joint Manipulator System;Mathematics;2023-08-19

2. A Survey on Modeling and Control Methods For Flexible Systems;2023 6th International Symposium on Autonomous Systems (ISAS);2023-06-23

3. Hex-rotor aircraft dynamics and simulation;IV INTERNATIONAL SCIENTIFIC FORUM ON COMPUTER AND ENERGY SCIENCES (WFCES II 2022);2023

4. Comparison of dynamic models for the lower limb exoskeleton based on absolute and relative coordinates;International Conference on Mechanisms and Robotics (ICMAR 2022);2022-11-10

5. Integrated nonlinear suboptimal control‐and‐estimator based on the state‐dependent differential Riccati equation approach;Optimal Control Applications and Methods;2022-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3