Robust Model Predictive Control for Two-DOF Flexible-Joint Manipulator System

Author:

Li Rong12ORCID,Wang Hengli1,Yan Gaowei1,Li Guoqiang2,Jian Long1ORCID

Affiliation:

1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. Nuclear Emergency and Nuclear Safety Department, China Institute for Radiation Protection, Taiyuan 030006, China

Abstract

This paper presents a practical study on how to improve the ℋ∞ performance and meet the input–output constraints of the two-degrees-of-freedom (DOF) flexible-joint manipulator system (FJMS) with parameter uncertainties and external disturbances. For this reason, a robust constrained moving-horizon ℋ∞ controller is designed to improve the system ℋ∞ performance while still satisfying the input–output constraints of the uncertain system. First, the uncertain controlled system model of the two-DOF FJMS is established via the Lagrange equation method, Spong’s assumption, and the linear fractional transformation (LFT) technique. Then, the control requirements and input–output constraints of the uncertain system are transformed into the linear matrix inequality (LMI) via the theory of ℋ∞ control and the full-block multiplier technique. Next, the LMI optimization problem refreshed by the current state is addressed at each sample moment with the idea of the moving-horizon control of the model predictive control (MPC), and the calculated gain is implemented to the nonlinear closed-loop system under the state feedback structure. The validity and feasibility of the designed control scheme is finally verified via the results of simulation experiments.

Funder

National Natural Science Foundation of China

Fundamental Research Program of Shanxi Province

Science and Technology Innovation Project of Higher Education Institutions in Shanxi Province

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3