Abstract
SUMMARYNovel kinematic architectures can be alternatives for designing energy efficient robotic systems. In this work, the impact of kinematic redundancies in the energy consumption of a planar PKM, the 3PRRR manipulator, is experimentally verified. Because of the presence of the kinematic redundancies, the inverse kinematic problem presents infinity solutions. In this way, a redundancy resolution scheme based on the Model Predictive Control technique is proposed and exploited. It can be concluded that the energy consumption of the non-redundant parallel manipulator 3RRR for executing predefined tasks can be considerably reduced by the inclusion of kinematic redundancies.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献