Abstract
SUMMARYThis paper presents a novel trajectory planning method for a flexible Cartesian robot manipulator in a point-to-point motion. In order to obtain an exact mathematical model, the parameters of the equation of motion are determined from an identification experiment. An artificial neural network is employed to generate the desired base position, and then, a particle swarm optimization technique is used as the learning algorithm, in which the sum of the displacements of the manipulator is chosen as the objective function. We show that the residual vibrations of the manipulator can be suppressed by minimizing the displacement of the manipulator. The effectiveness and validity of the proposed method are demonstrated by comparing the simulation and experimental results.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献