An optimal visual servo trajectory planning method for manipulators based on system nondeterministic model

Author:

Qi RuolongORCID,Tang Yuangui,Zhang Ke

Abstract

AbstractWhen a manipulator captures its target by a visual servo system, uncertainties can arise because of mechanical system and visual sensors exist error. This paper proposes an intelligent method to predict the successful rate for a manipulator to capture its target with motion and sensor errors. Because the mapping between the joint space of the manipulator and the Cartesian space at the end of the manipulator is nonlinear, when there is a bounded error of the manipulator’s joint, the error range of the end motion is constantly changing with the different joint positions. And at the same time, the visual servo camera will also measure the target from different positions and postures, so as to produce measurement results with different error ranges. The unknown time-varying error property not only greatly affects the stability of the closed-loop control but also causes the capture failure. The purpose of this paper is to estimate the success probability of different capture trajectories by establishing the nondeterministic model of manipulator control system. First, a system model including motion subsystem and feedback subsystem was established with system error described by Gaussian probability. And then Bayesian estimation was introduced into the system model to estimate the executing state of the predefined trajectory. Linear least quadratic regulators (LQR) control is used to simulate the input correction in the closed-loop control between motion subsystem and feedback subsystem. At last, the successful probability of capturing the target is established by the Gaussian distribution at the end point of the trajectory with geometric relationship calculation between tolerance range and error distribution. The effectiveness and practicability of the proposed method are proved by simulation and experiment.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3