Topology and Size–Shape Optimization of an Adaptive Compliant Gripper with High Mechanical Advantage for Grasping Irregular Objects

Author:

Liu Chih-HsingORCID,Chiu Chen-Hua,Hsu Mao-Cheng,Chen Yang,Chiang Yen-Pin

Abstract

SummaryThis study presents an optimal design procedure including topology optimization and size–shape optimization methods to maximize mechanical advantage (which is defined as the ratio of output force to input force) of the synthesized compliant mechanism. The formulation of the topology optimization method to design compliant mechanisms with multiple output ports is presented. The topology-optimized result is used as the initial design domain for subsequent size–shape optimization process. The proposed optimal design procedure is used to synthesize an adaptive compliant gripper with high mechanical advantage. The proposed gripper is a monolithic two-finger design and is prototyped using silicon rubber. Experimental studies including mechanical advantage test, object grasping test, and payload test are carried out to evaluate the design. The results show that the proposed adaptive complaint gripper assembly can effectively grasp irregular objects up to 2.7 kg.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3