Design, analysis, and testing of a motor-driven capsule robot based on a sliding clamper

Author:

Gao Jinyang,Yan Guozheng,He Su,Xu Fei,Wang Zhiwu

Abstract

SUMMARYWe propose a motor-driven capsule robot based on a sliding clamper (MCRSC), a device to explore the partially collapsed and winding intestinal tract. The MCRSC is powered by wireless power transmission based on near-field inductive coupling. It comprises a novel locomotion unit, a camera, and a three-dimensional receiving coil, all installed at both ends of the locomotion unit. The novel locomotion unit comprises a linear motion mechanism and a sliding clamper. The former adopts a pair of lead-screw and nut to obtain linear motion, whereas the latter anchors the MCRSC to a specific point of the intestinal tract by expanding its arc-shaped legs. The MCRSC is capable of two-way locomotion, which is activated by alternately executing linear motion and anchoring action. Ex vivo experiments have shown that the MCRSC is able to inspect the colon within a time frame of standard colonoscopy.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3