Towards capsule endoscope locomotion in large volumes: design, fuzzy modeling, and testing

Author:

Peker Furkan,Beşer Mert Alperen,Işıldar Ecem,Terzioğlu Yavuz,Erten Ahmet Can,Kumbasar Tufan,Ferhanoğlu OnurORCID

Abstract

AbstractWe present the design and deployment of a capsule endoscope via external electromagnets for locomotion in large volumes alongside its digital twin implementation based on interval type-2 fuzzy logic systems (IT2-FLSs). To perform locomotion, we developed an external mechanism comprising five external electromagnets on a two-dimensional translational platform that is to be placed underneath the patients’ bed and integrated multiple Neodymium magnets into the capsule. The interaction between the central bottom external electromagnet and the internal magnet forms a fixed body frame at the capsule center, allowing rotation. The interaction between the external electromagnets and the two internal magnets results in rotation. The elevation of the capsule is accomplished due to the interaction between the upper external electromagnet and the internal magnets. Through simulations, we model the capsule rotation as a function of torque and drive voltages. We validated the proposed locomotion approach experimentally and observed that the results are highly nonlinear and uncertain. Thus, we define a regression problem in which IT2-FLSs, capable of representing nonlinearity and uncertainty, are learned. To verify the proposed locomotion approach and test the IT2-FLS, we leverage our experimental effort to a stomach phantom and finally to an ex vivo bovine stomach. The experimental results validate the locomotion capability and show that the IT2-FLS can capture uncertainties while resulting in satisfactory prediction performance. To showcase the benefit in a clinical scenario, we present a digital twin implementation of the proposed approach in a virtual environment that can link physical and virtual worlds in real time.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3