Novel 2R3T and 2R2T parallel mechanisms with high rotational capability

Author:

Wang Congzhe,Fang Yuefa,Fang Hairong

Abstract

SUMMARYLarge rotational angles about two axes for parallel mechanisms (PMs) with two rotational and three translational (2R3T) degrees of freedom (DOFs) or two rotational and two translational (2R2T) DOFs are demanded in some industries, such as parallel machine tools and multi-axis 3D printing. To address the problem, this paper focuses on the structural synthesis of new 2R3T and 2R2T PMs with high rotational capability. First, two new moving platforms are proposed based on the concepts of decoupled and configurable design. By means of the proposed platforms and Lie group theory, a series of 2R2T and 2R3T PMs are synthesized. Then the inverse kinematics and velocity relationship of one of the synthesized 2R3T PMs are presented. Finally, the rotational capability of the same 2R3T PM is analyzed. The result shows that by means of actuation redundancy, the studied 2R3T PM indeed possesses the high rotational capability about two axes, even though interferences and singularities are taken into consideration.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference36 articles.

1. Type synthesis of parallel mechanisms having the second class GF sets and two dimensional rotations;Gao;ASME J. Mech. Robot.,2010

2. J. M. Hervé and F. Sparacino , “Structural Synthesis of Parallel Robots Generating Spatial translation,” Proc. 5th Int. Conf. Advanced Robotics, Pise, Italy, Vol. 1, (1991) pp. 808–813.

3. Forward kinematic problem of 5-RPUR parallel mechanisms (3T2R) with identical limb structures

4. Kinematic analysis and optimal design of a novel 1T3R parallel manipulator with an articulated travelling plate

5. Q. Li and Z. Huang , “Type synthesis of 4-DOF parallel manipulators,” Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on, Taipei, Taiwan, Vol. 1, pp. 755–760 (2003).

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3