Improvement of speeded-up robust features for robot visual simultaneous localization and mapping

Author:

Wang Yin-Tien,Lin Guan-Yu

Abstract

SUMMARYA robot mapping procedure using a modified speeded-up robust feature (SURF) is proposed for building persistent maps with visual landmarks in robot simultaneous localization and mapping (SLAM). SURFs are scale-invariant features that automatically recover the scale and orientation of image features in different scenes. However, the SURF method is not originally designed for applications in dynamic environments. The repeatability of the detected SURFs will be reduced owing to the dynamic effect. This study investigated and modified SURF algorithms to improve robustness in representing visual landmarks in robot SLAM systems. Many modifications of the SURF algorithms are proposed in this study including the orientation representation of features, the vector dimension of feature description, and the number of detected features in an image. The concept of sparse representation is also used to describe the environmental map and to reduce the computational complexity when using extended Kalman filter (EKF) for state estimation. Effective procedures of data association and map management for SURFs in SLAM are also designed to improve accuracy in robot state estimation. Experimental works were performed on an actual system with binocular vision sensors to validate the feasibility and effectiveness of the proposed algorithms. The experimental examples include the evaluation of state estimation using EKF SLAM and the implementation of indoor SLAM. In the experiments, the performance of the modified SURF algorithms was compared with the original SURF algorithms. The experimental results confirm that the modified SURF provides better repeatability and better robustness for representing the landmarks in visual SLAM systems.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3