Abstract
AbstractIn order to complete many complex operations and attain more general-purpose utility, robotic grasp is a necessary skill to master. As the most common essential action of robots in factory and daily life environments, robotic autonomous grasping has a wide range of application prospects and has received much attention from researchers in the past decade. However, the accurate grasp of arbitrary objects in unstructured environments is still a research challenge that has not yet been completely overcome. A complete robotic grasp system usually involves three aspects: grasp detection, grasp planning, and control subsystem. As the first step, identifying the location of the object and generating the grasp pose is the premise of successful grasp, which is conducive to planning the subsequent grasp path and the realization of the entire grasp action. Therefore, this paper conducts a literature review focusing on grasp detection technology and concludes two significant aspects: the analytic and data-driven methods. According to the previous grasp experience of the target object, this paper divides the data-driven methods into the grasp of known and unknown objects. Then it describes in detail the typical grasp detection methods and related characteristics of each classification in the grasp of unknown objects. Finally, current research status and potential research directions in this field are discussed to provide some reference for related research.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献