Abstract
We have investigated the dynamics of a monotrichous bacteria cell near a wall boundary, taking elastic hook flexibility into consideration. Combining theoretical linear stability analysis and direct numerical computations via the boundary element method, we have found that the elastohydrodynamic coupling between the hook elasticity and cell rotational motion enables a stable vertical spinning behaviour like a low-Reynolds-number spinning top. The forwardly rotated flagellum, which generates the force exertion pushing towards the cell body, typically destabilizes the vertical upright position and leads to a boundary-following motion. In contrast, the backward rotation of the flagellum, generating a force pulling the cell body, contributes to stable upright behaviour in a large range of hook rigidity. Further numerical investigations have demonstrated that the non-spherical geometry of the cell body and boundary adhesive interactions affect the bacterial dynamics, leading to complex behaviours such as horizontal spinning and unstable vertical spinning motions, both of which are experimentally observed in Pseudomonas aeruginosa bacteria. These results highlight the rich diversity of bacterial surface motility emerging from mechanical boundary interactions coupled with the cell swimming and hook flexibility.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献