Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development

Author:

Bennett Rachel R.12,Lee Calvin K.3,De Anda Jaime3,Nealson Kenneth H.4,Yildiz Fitnat H.5,O'Toole George A.6,Wong Gerard C. L.3,Golestanian Ramin1

Affiliation:

1. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK

2. Department of Physics, University of Pennsylvania, Philadelphia, PA 19104, USA

3. Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, CA 90095-1600, USA

4. Departments of Earth Sciences and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA

5. Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA

6. Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA

Abstract

Monotrichous bacteria on surfaces exhibit complex spinning movements. Such spinning motility is often a part of the surface detachment launch sequence of these cells. To understand the impact of spinning motility on bacterial surface interactions, we develop a hydrodynamic model of a surface-bound bacterium, which reproduces behaviours that we observe in Pseudomonas aeruginosa , Shewanella oneidensis and Vibrio cholerae , and provides a detailed dictionary for connecting observed spinning behaviour to bacteria–surface interactions. Our findings indicate that the fraction of the flagellar filament adhered to the surface, the rotation torque of this appendage, the flexibility of the flagellar hook and the shape of the bacterial cell dictate the likelihood that a microbe will detach and the optimum orientation that it should have during detachment. These findings are important for understanding species-specific reversible attachment, the key transition event between the planktonic and biofilm lifestyle for motile, rod-shaped organisms.

Funder

Human Frontier Science Program

Engineering and Physical Sciences Research Council

National Institutes of Health

Office of Naval Research

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3