Evolution of thermally stratified turbulent open channel flow after removal of the heat source

Author:

Kirkpatrick Michael P.ORCID,Williamson N.ORCID,Armfield S. W.,Zecevic V.

Abstract

Evolution of thermally stratified open channel flow after removal of a volumetric heat source is investigated using direct numerical simulation. The heat source models radiative heating from above and varies with height due to progressive absorption. After removal of the heat source the initial stable stratification breaks down and the channel approaches a fully mixed isothermal state. The initial state consists of three distinct regions: a near-wall region where stratification plays only a minor role, a central region where stratification has a significant effect on flow dynamics and a near-surface region where buoyancy effects dominate. We find that a state of local energetic equilibrium observed in the central region of the channel in the initial state persists until the late stages of the destratification process. In this region local turbulence parameters such as eddy diffusivity $k_{h}$ and flux Richardson number $R_{f}$ are found to be functions only of the Prandtl number $Pr$ and a mixed parameter ${\mathcal{Q}}$, which is equal to the ratio of the local buoyancy Reynolds number $Re_{b}$ and the friction Reynolds number $Re_{\unicode[STIX]{x1D70F}}$. Close to the top and bottom boundaries turbulence is also affected by $Re_{\unicode[STIX]{x1D70F}}$ and vertical position $z$. In the initial heated equilibrium state the laminar surface layer is stabilised by the heat source, which acts as a potential energy sink. Removal of the heat source allows Kelvin–Helmholtz-like shear instabilities to form that lead to a rapid transition to turbulence and significantly enhance the mixing process. The destratifying flow is found to be governed by bulk parameters $Re_{\unicode[STIX]{x1D70F}}$, $Pr$ and the friction Richardson number $Ri_{\unicode[STIX]{x1D70F}}$. The overall destratification rate ${\mathcal{D}}$ is found to be a function of $Ri_{\unicode[STIX]{x1D70F}}$ and $Pr$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fate of Heat;Wetzel's Limnology;2024

2. Effect of Thermal Stratification in Meandering Turbulent Open-Channel Flow with Varying Sinuosity;Journal of Hydraulic Engineering;2023-09

3. Stratification and temporal evolution of mixing regimes in diurnally heated river flows;Environmental Fluid Mechanics;2023-08-04

4. Intermittency and critical mixing in internally heated stratified channel flow;Journal of Fluid Mechanics;2023-05-12

5. Modelling turbulent stratified open channel flow for Pr=7 using multiscale DNS;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3