The hydroelastic response of a surface-piercing hydrofoil in multi-phase flows. Part 1. Passive hydroelasticity

Author:

Harwood Casey M.ORCID,Felli MarioORCID,Falchi MassimoORCID,Ceccio Steven L.ORCID,Young Yin L.

Abstract

Compliant lift-generating surfaces have widespread applications as marine propellers, hydrofoils and control surfaces, and the fluid–structure interactions (FSI) of such systems have important effects upon their performance and stability. Multi-phase flows like cavitation and ventilation alter the hydrodynamic and hydroelastic behaviours of lifting surfaces in ways that are not yet completely understood. This paper describes experiments on one rigid and two flexible variants of a vertical surface-piercing hydrofoil in wetted, ventilating and cavitating conditions. Tests were conducted in a towing tank and a free-surface cavitation channel. This work, which is Part 1 of a two-part series, examines the passive, or flow-induced, fluid–structure interactions of the hydrofoils. Four characteristic flow regimes are described: fully wetted, partially ventilated, partially cavitating and fully ventilated. Hydroelastic coupling is shown to increase the hydrodynamic lift and yawing moments across all four flow regimes by augmenting the effective angle of attack. The effective angle of attack, which was derived using a beam model to account for the effect of spanwise twisting deflections, effectively collapses the hydrodynamic load coefficients for the three hydrofoils. A generalized cavitation parameter, using the effective angle of attack, is used to collapse the lift and moment coefficients for all trials at a single immersed aspect ratio, smoothly bridging the four distinct flow regimes. None of the hydrofoils approached the static divergence condition, which occurs when the hydrodynamic stiffness negates the structural stiffness, but theory and experiments both show that ventilation increases the divergence speed by reducing the hydrodynamic twisting moment about the elastic axis. Coherent vortex shedding from the blunt trailing edge of the hydrofoil causes vortex-induced vibration at an approximately constant Strouhal number of 0.275 (based on the trailing edge thickness), and leads to amplified response at lock-in, when the vortex-shedding frequency approaches one of the resonant modal frequencies of the coupled fluid–structure system.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference62 articles.

1. Besch, P. K.  & Liu, Y. 1971 Flutter and divergence characteristics of four low mass ratio hydrofoils. Tech. Rep. 3410. Naval Ship Research and Development Center, Washington, DC.

2. Besch, P. K.  & Liu, Y. N. 1974 Hydroelastic design of subcavitating and cavitating hydrofoil strut systems. Tech. Rep. 4257. Naval Ship Research and Development Center, Washington, DC.

3. Hydrodynamic Damping, Flow-Induced Oscillations, and Biharmonic Response

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3