Direct numerical simulation of high-speed transition due to roughness elements

Author:

Shrestha PrakashORCID,Candler Graham V.

Abstract

We study and compare instability mechanisms of a Mach 5.65 laminar boundary layer tripped by an isolated diamond-shaped trip and by an array of diamond-shaped trips using direct numerical simulations. A low-Reynolds-number experiment, consisting of the trip array (Semper & Bowersox, AIAA J., vol. 55 (3), 2017, pp. 808–817), is used to validate our simulations. Three dynamically prominent flow structures are observed in both trip configurations. These flow structures are the upstream vortex system, the shock system, and the downstream shear layers/counter-rotating streamwise vortices that originate from the top and sides of the trips. Analysis of the power spectral density of pressure reveals the source of instability to be an interaction between the shear layers and the counter-rotating streamwise vortices downstream of both trip configurations. The interaction leads to the formation of hairpin-like structures that eventually break down to turbulent flow. This finding contrasts with that of an isolated cylindrical trip (Subbareddy et al., J. Fluid Mech., vol. 748, 2014, pp. 848–878) where the upstream vortex system is found to be the source of instability. Therefore, the shape of a trip plays an important role in the instability mechanism. Furthermore, dynamic mode decomposition (Rowley et al., J. Fluid Mech., vol. 641, 2009, pp. 115–127; Schmid, J. Fluid Mech., vol. 656, 2010, pp. 5–28) of three-dimensional snapshots of pressure fluctuations unveil globally dominant modes consistent with the power spectral density analysis in both diamond-shaped trip configurations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3