Tripping effects on model-scale studies of flow over the DARPA SUBOFF

Author:

Morse NicholasORCID,Mahesh KrishnanORCID

Abstract

Trip-resolved large-eddy simulations of the DARPA SUBOFF are performed to investigate the development of turbulent boundary layers (TBLs) in model-scale studies. The primary consideration of the study is the extent to which the details of tripping affect statistics in large-eddy simulations of complex geometries, which are presently limited to moderate Reynolds number TBLs. Two trip wire configurations are considered, along with a simple numerical trip (wall-normal blowing), which serves as an exemplar of artificial computational tripping methods often used in practice. When the trip wire height exceeds the laminar boundary layer thickness, shedding from the trip wire initiates transition, and the near field is characterized by an elevation of the wall-normal Reynolds stress and a modification of the turbulence anisotropy and mean momentum balance. This trip wire also induces a large jump in the boundary layer thickness, which affects the way in which the TBL responds to the pressure gradients and streamwise curvature of the hull. The trip-induced turbulence decays along the edge of the TBL as a wake component that sits on top of the underlying TBL structure, which dictates the evolution of the momentum and displacement thicknesses. In contrast, for a trip wire height shorter than the laminar boundary layer thickness, transition is initiated at the reattachment point of the trip-induced recirculation bubble, and the artificial trip reasonably replicates the resolved trip wire behaviour relatively shortly downstream of the trip location. For each case, the inner layer collapses rapidly in terms of the mean profile, Reynolds stresses and mean momentum balance, which is followed by the collapse of the Reynolds stresses in coordinates normalized by the local momentum thickness, and finally against the 99 % thickness. By this point, the lasting impact of the trip is the offset in boundary layer thickness due to the trip itself, which becomes a diminishing fraction of the total boundary layer thickness as the TBL grows. The importance of tripping the model appendages is also highlighted due to their lower Reynolds numbers and susceptibility to laminar separations.

Funder

Office of Naval Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3