Optimal perturbations for controlling the growth of a Rayleigh–Taylor instability

Author:

Kord AliORCID,Capecelatro JesseORCID

Abstract

A discrete adjoint-based method is employed to control multi-mode Rayleigh–Taylor (RT) instabilities via strategic manipulation of the initial interfacial perturbations. We seek to find to what extent mixing and growth can be enhanced at late stages of the instability and which modes are targeted to achieve this. Three objective functions are defined to quantify RT mixing and growth: (i) variance of mole fraction, (ii) a kinetic energy norm based on the vertical velocity and (iii) variations of mole fraction with respect to the unperturbed initial state. The sensitivity of these objective functions to individual amplitudes of the initial perturbations are studied at various stages of the RT instability. The most sensitive wavenumber during the early stages of the instability closely matches the most unstable wavenumber predicted by linear stability theory. It is also shown that randomly changing the initial perturbations has little effect at early stages, but results in large variations in both RT growth and its sensitivity at later times. The sensitivity obtained from the adjoint solution is employed in gradient-based optimization to both suppress and enhance the objective functions. The adjoint-based optimization framework was capable of completely suppressing mixing by shifting all of the interfacial perturbation energy to the highest modes such that diffusion dominates. The optimal initial perturbations for enhancing the objective functions were found to have a broadband spectrum resulting in non-trivial coupling between modes and depends on the particular objective function being optimized. The objective functions were increased by as much as a factor of nine in the self-similar late-stage growth regime compared to an interface with a uniform distribution of modes, corresponding to a 32% increase in the bubble growth parameter and 54% increase in the mixing width. It was also found that the interfacial perturbations optimized at early stages of the instability are unable to predict enhanced mixing at later times, and thus optimizing late-time multi-mode RT instabilities requires late-time sensitivity information. Finally, it was found that the optimized distribution of interfacial perturbations obtained from two-dimensional simulations was capable of enhancing the objective functions in three-dimensional flows. As much as 51% and 99% enhancement in the bubble growth parameter and mixing width, respectively, was achieved, even greater than what was reached in two dimensions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A robust, discrete-gradient descent procedure for optimisation with time-dependent PDE and norm constraints;The SMAI Journal of computational mathematics;2024-02-01

2. Turbulent mixing in the vertical magnetic Rayleigh–Taylor instability;Journal of Fluid Mechanics;2024-01-11

3. Adjoint-based machine learning for active flow control;Physical Review Fluids;2024-01-09

4. Plasma Waves and Rayleigh–Taylor Instability: Theory and Application;Plasma Science - Recent Advances, New Perspectives and Applications;2023-07-12

5. An adjoint method for control of liquid-gas flows using a sharp interface model;Journal of Computational Physics;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3