Slipping moving contact lines: critical roles of de Gennes’s ‘foot’ in dynamic wetting

Author:

Wei Hsien-HungORCID,Tsao Heng-Kwong,Chu Kang-Ching

Abstract

In the context of dynamic wetting, wall slip is often treated as a microscopic effect for removing viscous stress singularity at a moving contact line. In most drop spreading experiments, however, a considerable amount of slip may occur due to the use of polymer liquids such as silicone oils, which may cause significant deviations from the classical Tanner–de Gennes theory. Here we show that many classical results for complete wetting fluids may no longer hold due to wall slip, depending crucially on the extent of de Gennes’s slipping ‘foot’ to the relevant length scales at both the macroscopic and microscopic levels. At the macroscopic level, we find that for given liquid height $h$ and slip length $\unicode[STIX]{x1D706}$, the apparent dynamic contact angle $\unicode[STIX]{x1D703}_{d}$ can change from Tanner’s law $\unicode[STIX]{x1D703}_{d}\sim Ca^{1/3}$ for $h\gg \unicode[STIX]{x1D706}$ to the strong-slip law $\unicode[STIX]{x1D703}_{d}\sim Ca^{1/2}\,(L/\unicode[STIX]{x1D706})^{1/2}$ for $h\ll \unicode[STIX]{x1D706}$, where $Ca$ is the capillary number and $L$ is the macroscopic length scale. Such a no-slip-to-slip transition occurs at the critical capillary number $Ca^{\ast }\sim (\unicode[STIX]{x1D706}/L)^{3}$, accompanied by the switch of the ‘foot’ of size $\ell _{F}\sim \unicode[STIX]{x1D706}Ca^{-1/3}$ from the inner scale to the outer scale with respect to $L$. A more generalized dynamic contact angle relationship is also derived, capable of unifying Tanner’s law and the strong-slip law under $\unicode[STIX]{x1D706}\ll L/\unicode[STIX]{x1D703}_{d}$. We not only confirm the two distinct wetting laws using many-body dissipative particle dynamics simulations, but also provide a rational account for anomalous departures from Tanner’s law seen in experiments (Chen, J. Colloid Interface Sci., vol. 122, 1988, pp. 60–72; Albrecht et al., Phys. Rev. Lett., vol. 68, 1992, pp. 3192–3195). We also show that even for a common spreading drop with small macroscopic slip, slip effects can still be microscopically strong enough to change the microstructure of the contact line. The structure is identified to consist of a strongly slipping precursor film of length $\ell \sim (a\unicode[STIX]{x1D706})^{1/2}Ca^{-1/2}$ followed by a mesoscopic ‘foot’ of width $\ell _{F}\sim \unicode[STIX]{x1D706}Ca^{-1/3}$ ahead of the macroscopic wedge, where $a$ is the molecular length. It thus turns out that it is the ‘foot’, rather than the film, contributing to the microscopic length in Tanner’s law, in accordance with the experimental data reported by Kavehpour et al. (Phys. Rev. Lett., vol. 91, 2003, 196104) and Ueno et al. (Trans. ASME J. Heat Transfer, vol. 134, 2012, 051008). The advancement of the microscopic contact line is still led by the film whose length can grow as the $1/3$ power of time due to $\ell$, as supported by the experiments of Ueno et al. and Mate (Langmuir, vol. 28, 2012, pp. 16821–16827). The present work demonstrates that the behaviour of a moving contact line can be strongly influenced by wall slip. Such slip-mediated dynamic wetting might also provide an alternative means for probing slippery surfaces.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3