Abstract
Boundary conditions at a liquid–solid interface are crucial to dynamics of a liquid film coated on a fibre. Here, a theoretical framework based on axisymmetric Stokes equations is developed to explore the influence of liquid–solid slip on the Rayleigh–Plateau instability of a cylindrical film on a fibre. The new model not only shows that the slip-enhanced growth rate of perturbations is overestimated by the classical lubrication model, but also indicates a slip-dependent dominant wavelength, instead of a constant value obtained by the lubrication method, which leads to larger drops formed on a more slippery fibre. The theoretical findings are validated by direct numerical simulations of Navier–Stokes equations via a volume-of-fluid method. Additionally, the slip-dependent dominant wavelengths predicted by our model agree with the experimental results provided by Haefner et al. (Nat. Commun., vol. 6, issue 1, 2015, 7409).
Funder
National Natural Science Foundation of China
Youth Innovation Promotion Association of the Chinese Academy of Sciences
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献