Control of a purely elastic symmetry-breaking flow instability in cross-slot geometries

Author:

Davoodi Mahdi,Domingues Allysson F.ORCID,Poole Robert J.ORCID

Abstract

The cross-slot stagnation point flow is one of the benchmark problems in non-Newtonian fluid mechanics as it allows large strains to develop and can therefore be used for extensional rheometry measurements or, once instability arises, as a mixing device. In such a flow, beyond a critical value for which the ratio of elastic force to viscous force is high enough, elasticity can break symmetry even in the absence of significant inertial forces (i.e. creeping flow), which is an unwanted phenomenon if the device is to be used as a rheometer but beneficial from a mixing perspective. In this work, a passive control mechanism is introduced to the cross-slot by adding a cylinder at the geometric centre to replace the ‘free’ stagnation point with ‘pinned’ stagnation points at the surface of the cylinder. In the current modified geometry, effects of the blockage ratio (the ratio of the diameter of the cylinder to the width of the channel), the Weissenberg number (the ratio of elastic forces to viscous forces) and extensibility parameters ($\unicode[STIX]{x1D6FC}$ and $L^{2}$) are investigated in two-dimensional numerical simulations using both the simplified Phan-Thien and Tanner and finitely extensible nonlinear elastic models. It is shown that the blockage ratio for fixed solvent-to-total-viscosity ratio has a stabilizing effect on the associated symmetry-breaking instability. The resulting data show that the suggested modification, although significantly changing the flow distribution in the region near the stagnation point, does not change the nature of the symmetry-breaking instability or, for low blockage ratio, the critical condition for onset. Using both numerical and physical experiments coupled with a supporting theoretical analysis, we conclude that this instability cannot therefore be solely related to the extensional flow near the stagnation point but it is more likely related to streamline curvature and the high deformation rates towards the corners, i.e. a classic ‘curved streamlines’ purely elastic instability. Our work also suggests that the proposed geometric modification can be an effective approach for enabling higher flow rates to be achieved whilst retaining steady symmetric flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3