Abstract
The standard resonance conditions for Bragg scattering as well as weakly nonlinear wave triads have been traditionally derived in the absence of any background velocity. In this paper, we have studied how these resonance conditions get modified when uniform, as well as various piecewise linear velocity profiles, are considered for two-layered shear flows. Background velocity can influence the resonance conditions in two ways: (i) by causing Doppler shifts, and (ii) by changing the intrinsic frequencies of the waves. For Bragg resonance, even a uniform velocity field changes the resonance condition. Velocity shear strongly influences the resonance conditions since, in addition to changing the intrinsic frequencies, it can cause unequal Doppler shifts between the surface, pycnocline and the bottom. Using multiple scale analysis and Fredholm alternative, we analytically obtain the equations governing both the Bragg resonance and the wave triads. We have also extended the higher-order spectral method, a highly efficient computational tool usually used to study triad and Bragg resonance problems, to incorporate the effect of piecewise linear velocity profile. A significant aspect, both on the theoretical and numerical fronts, has been extending the potential flow approximation, which is the basis of the study of these kinds of problems, to incorporate piecewise constant background shear.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献