A Weakly Nonlinear System for Waves and Sheared Currents over Variable Bathymetry

Author:

Touboul Julien1ORCID,Morales-Marquez Veronica2ORCID,Belibassakis Kostas3ORCID

Affiliation:

1. École Centrale Méditerranée, Aix Marseille Université, CNRS, IRPHE UMR 7342, 13384 Marseille, France

2. University of Toulon, Aix Marseille University, CNRS/INSU, IRD, MIO UM 110, Mediterranean Institute of Oceanography, 83130 La Garde, France

3. School of Naval Architecture and Marine Engineering, National Technical University of Athens, Zografos, 15773 Athens, Greece

Abstract

The wave–current–seabed interaction problem is studied by using a coupled-mode system developed for modeling wave scattering by non-homogeneous, sheared currents in variable bathymetry regions. The model is based on a modal series expansion of wave velocity based on vertical eigenfunctions, dependent on local depth and flow parameters, including propagating and evanescent modes. The latter representation is able to accurately satisfy the wave flow continuity condition and the no-entrance boundary condition on the sloping parts of the seabed. A new derivation of a simplified nonlinear system is introduced using decomposition to a mean flow and a perturbative wave field. To force the system to consider incoming waves at the inlet, boundary knowledge of periodic, travelling nonlinear water waves over a flat bottom is required. For this purpose, specific solutions are derived using the semi-analytical method based on the stream function formulation, for cases of water waves propagating above linearly and exponentially sheared currents. Results obtained by the application of the CMS concerning the propagation of waves and currents—in particular, examples characterized by depth inhomogeneities—are presented and discussed, illustrating the applicability and performance of the method.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current Loads on a Horizontal Floating Flexible Membrane in a 3D Channel;Journal of Marine Science and Engineering;2024-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3