Stewartson-layer instability in a wide-gap spherical Couette experiment: Rossby number dependence

Author:

Hoff Michael,Harlander UweORCID

Abstract

Instabilities of a viscous fluid between two fast but differentially rotating concentric spheres, the so-called spherical Couette flow, with a fixed radius ratio of $\unicode[STIX]{x1D702}=r_{i}/r_{o}=1/3$ are studied, where $r_{i}$ is the inner and $r_{o}$ the outer radius of the spherical shell. Of particular interest is the difference between cases where the Rossby number $Ro=(\unicode[STIX]{x1D6FA}_{i}-\unicode[STIX]{x1D6FA}_{o})/\unicode[STIX]{x1D6FA}_{o}>0$ and cases with $Ro<0$, where $\unicode[STIX]{x1D6FA}_{i}$ and $\unicode[STIX]{x1D6FA}_{o}$ are the inner- and outer-sphere angular velocities. The basic state in both situations is an axisymmetric shear flow with a Stewartson layer situated on the tangent cylinder. The tangent cylinder is given by a cylinder that touches the equator of the inner sphere with an axis parallel to the axis of rotation. The experimental results presented fully confirm earlier numerical results obtained by Hollerbach (J. Fluid Mech., vol. 492, 2003, pp. 289–302) showing that for $Ro>0$ a progression to higher azimuthal wavenumbers $m$ can be seen as the rotation rate $\unicode[STIX]{x1D6FA}_{0}$ increases, but $Ro<0$ gives $m=1$ over a large range of rotation rates. It is further found that in the former case the modes have spiral structures radiating away from Stewartson layer towards the outer shell whereas for $Ro<0$ the modes are trapped in the vicinity of the Stewartson layer. Further, the mean flow excited by inertial mode self-interaction and its correlation with the mode’s amplitudes are investigated. The scaling of the critical $Ro$ with Ekman number $E=\unicode[STIX]{x1D708}/(\unicode[STIX]{x1D6FA}_{o}\,d^{2})$, where $\unicode[STIX]{x1D708}$ is the kinematic viscosity and $d$ the gap width, is well within the bounds that have been established in a number of experimental studies using cylindrical geometries and numerical studies using spherical cavities. However, the present work is the first that experimentally examines Stewartson-layer instabilities as a function of the sign of $Ro$ for the true spherical-shell geometry.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3