Numerical reproduction of the spiral wave visualized experimentally in a wide-gap spherical Couette flow

Author:

Yoshikawa KazukiORCID,Itano TomoakiORCID,Sugihara-Seki MasakoORCID

Abstract

Spherical Couette flow experiments were conducted according to the work of Egbers and Rath [Acta Mech. 111, 125–140 (1995)]. While the value of the critical Reynolds number obtained by the previous experiments was in good agreement with the numerical prediction, it has remained a question why a spiral wave bifurcating over the critical Reynolds number can be visualized even by a classical flow visualization technique like the mixing of a small amount of aluminum flakes to the working fluid. In the present study, through visualization using aluminum flakes drifting on a horizontal plane illuminated by a laser sheet, the flow was identified as a spiral wave with azimuthal wavenumber m = 3, using the experimentally obtained and numerically deduced comparison between phase velocities. By solving the equation of motion for the infinitesimal planar particles advecting in the flow field of the spiral wave, a visual distribution of reflected light was virtually reproduced, which is in good agreement with the experimentally obtained picture.

Funder

Japan Society for the Promotion of Science

H2020 Marie Skłodowska-Curie Actions

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3