Self-channelisation and levee formation in monodisperse granular flows

Author:

Rocha F. M.ORCID,Johnson C. G.ORCID,Gray J. M. N. T.ORCID

Abstract

Dense granular flows can spontaneously self-channelise by forming a pair of parallel-sided static levees on either side of a central flowing channel. This process prevents lateral spreading and maintains the flow thickness, and hence mobility, enabling the grains to run out considerably further than a spreading flow on shallow slopes. Since levees commonly form in hazardous geophysical mass flows, such as snow avalanches, debris flows, lahars and pyroclastic flows, this has important implications for risk management in mountainous and volcanic regions. In this paper an avalanche model that incorporates frictional hysteresis, as well as depth-averaged viscous terms derived from the $\unicode[STIX]{x1D707}(I)$-rheology, is used to quantitatively model self-channelisation and levee formation. The viscous terms are crucial for determining a smoothly varying steady-state velocity profile across the flowing channel, which has the important property that it does not exert any shear stresses at the levee–channel interfaces. For a fixed mass flux, the resulting boundary value problem for the velocity profile also uniquely determines the width and height of the channel, and the predictions are in very good agreement with existing experimental data for both spherical and angular particles. It is also shown that in the absence of viscous (second-order gradient) terms, the problem degenerates, to produce plug flow in the channel with two frictionless contact discontinuities at the levee–channel margins. Such solutions are not observed in experiments. Moreover, the steady-state inviscid problem lacks a thickness or width selection mechanism and consequently there is no unique solution. The viscous theory is therefore a significant step forward. Fully time-dependent numerical simulations to the viscous model are able to quantitatively capture the process in which the flow self-channelises and show how the levees are initially emplaced behind the flow head. Both experiments and numerical simulations show that the height and width of the channel are not necessarily fixed by these initial values, but respond to changes in the supplied mass flux, allowing narrowing and widening of the channel long after the initial front has passed by. In addition, below a critical mass flux the steady-state solutions become unstable and time-dependent numerical simulations are able to capture the transition to periodic erosion–deposition waves observed in experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3