Transient wave activity in snow avalanches is controlled by entrainment and topography

Author:

Li XingyueORCID,Sovilla BettyORCID,Gray John Mark Nicholas TimmORCID,Gaume JohanORCID

Abstract

AbstractWaves are omnipresent in avalanches on Earth and other planets. The dynamic nature of waves makes them dangerous in geological hazards such as debris flows, turbidity currents, lava flows, and snow avalanches. Extensive research on granular waves has been carried out by using theoretical and numerical approaches with idealized assumptions. However, the mechanism of waves in realistic complex situations remains intangible, as it is notoriously difficult to capture complex granular waves on real terrain. Here, we leverage a recently developed hybrid Eulerian-Lagrangian numerical scheme and an elastoplastic constitutive model to investigate the processes involved in waves of snow avalanches, including erosion, deposition, and flow instability induced by terrain irregularity. This enables us to naturally simulate roll-waves, erosion-deposition waves, and their transitions in a single large-scale snow avalanche on real terrain. Simulated wave features show satisfactory consistency with field data obtained with different radar technologies. Based on a dimensionless analysis, the wave mechanics is not only controlled by the Froude number and local topography but also by the mass of the wave which governs the entrainment propensity. This study offers new insights into wave mechanisms of snow avalanches and provides a novel and promising pathway for exploring transient waves in granular mass movements.

Funder

National Natural Science Foundation of China

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3